SECTION: Earth Science
SCIENTIFIC ORGANIZATION:
Ural Federal University
REPORT FORM:
«Poster report»
AUTHOR(S)
OF THE REPORT:
N. Rokotyan, R. Imasu, M. Khamatnurova, V. Zakharov, K. Gribanov, and C. Petri
SPEAKER:
Nikita Rokotyan
REPORT TITLE:
Ground-based remote sensing of XCO2 and XCH4 at the Ural Atmospheric Station. Comparisonwiththe GOSAT L2 retrievals.
TALKING POINTS:

The Ural Atmospheric Station in Kourovka (UAS) (57.038N, 59.545E, 297m elevation) is located in a wild forest with background atmospheric conditions. The UAS is equipped with a Fourier interferometer Bruker Optics IFS-125M (maximum spectral range 420-25000 cm-1, maximum resolution 0.0035 cm-1), conjugated with a solar tracker A547N. UAS provides remote columnar measurements of atmospheric composition in the atmosphere for validational purposes. Recent simulations of ECHAM5-wiso general circulation model (Werner et al., 2011) demonstrated, that the UAS can be used as a reference site for climate studies in western Siberia region (Butzin et al., 2014, Gribanov et al., 2014). Raw interferograms are recorded in DC mode. The DC interferograms are then processed by the special software (Keppel-Aleks, G. et al, 2007), which performs phase correction and low-pass filtering of the signal to correct solar intensity variations. This approach improves the retrieval from measurements recorded under conditions with significant amounts of cloud or aerosol cover. Measurements are conducted in near infrared range (4000-11000 cm-1) with the resolution of 0.02 cm-1. This makes it possible to retrieve mean concentrations of multiple species in the vertical atmospheric column. For the inverse problem solving we follow the approach of the Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011). The dry-air mole fractions of CO2 and CH4 retrieved from UAS measurements were compared to the GOSAT NIES L2 products. The results of the comparison are presented at the poster.

Butzin, M., Werner, M., Masson-Delmotte, V., Risi, C., Frankenberg, C., Gribanov, K., Jouzel, J., and Zakharov, V. I.: Variations of oxygen-18 in West Siberian precipitation during the last 50 years, Atmos. Chem. Phys., 14, 5853-5869, doi:10.5194/acp-14-5853-2014, 2014.

Gribanov, K., Jouzel, J., Bastrikov, V., Bonne, J.-L., Breon, F.-M., Butzin, M., Cattani, O., Masson-Delmotte, V., Rokotyan, N., Werner, M., and Zakharov, V.: Developing a western Siberia reference site for tropospheric water vapourisotopologue observations obtained by different techniques (in situ and remote sensing), Atmos. Chem. Phys., 14, 5943-5957, doi:10.5194/acp-14-5943-2014, 2014.

Keppel-Aleks, G., Toon, G. C., Wennberg, P. O., and Deutscher, N. M. (2007). Reducing the impact of source brightness fluctuations on spectra obtained by Fourier-transform spectrometry. Applied Optics 46, 4774-4779. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17609726.

Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., Lohmann, G.: Stable water isotopes in the ECHAM5 general circulation model: Toward highresolution isotope modeling on a global scale, J. Geophys. Res., 16, D15109, 2011.

Wunch, D., G. C. Toon, J.-F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg (2011), The Total Carbon Column Observing Network, Philos. Trans. R. Soc. A, 369(1943), 2087–2112, doi:10.1098/rsta.2010.0240.